集成感应和通信(ISAC)代表范式转移,以前竞争的无线传输是共同设计的,可通过共同使用硬件平台来提高光谱,能源和硬件效率来和谐地运行。但是,由于诸如褪色和堵塞之类的对抗性因素,ISAC无融合可能会遭受高感知不确定性的影响。本文提出了一个多点ISAC(MPISAC)系统,该系统通过利用多雷达数据冗余来融合来自多个ISAC设备的输出,以实现更高的感应性能。此外,我们建议通过功能选择模块有效地探索传感和通信之间的性能权衡,该功能选择模块可适应地确定ISAC设备的工作状态(即传感或通信)。我们方法的症结在于采用融合模型,该模型通过假设检验和最佳投票分析来预测融合精度。仿真结果表明,MPISAC优于各种基准方案,并表明所提出的方法可以有效地跨越ISAC系统中的权衡区域。
translated by 谷歌翻译
随机梯度下降(SGD)是现代机器学习(ML)系统的基石。尽管具有其计算效率,但SGD仍需要随机数据访问,这些数据访问在依赖块可调地理的二级存储的系统中实现效率低下,例如HDD和SSD,例如TensorFlow/Pytorch和DB ML系统,而不是大文件。为了解决这种阻抗不匹配,已经提出了各种数据改组策略,以平衡SGD的收敛速率(有利于随机性)及其I/O性能(有利于顺序访问)。在本文中,我们首先对现有数据改组策略进行系统的实证研究,该研究表明,所有现有策略都有改进的空间 - 它们都在I/O性能或融合率方面受苦。考虑到这一点,我们提出了一种简单但新颖的分层数据改组策略Corgipile。与现有的策略相比,Corgipile避免了完整的数据洗牌,同时保持SGD的可比收敛速度,就好像执行了完整的混音一样。我们对Corgipile的融合行为提供了非平凡的理论分析。我们通过在新的CorgipileDataSet API中设计新的平行/分布式洗牌操作员来进一步将Corgipile整合到Pytorch中。我们还通过介绍具有优化的三个新的物理运营商,将Corgipile集成到PostgreSQL中。我们的实验结果表明,Corgipile可以与全面的SGD达到可比的收敛速率,以实现深度学习和广义线性模型。对于ImageNet数据集的深度学习模型,Corgipile比带有完整数据洗牌的Pytorch快1.5倍。对于具有线性模型的INDB ML,在HDD和SSD上,Corgipile的Corgipile比两个最先进的IN-DB ML系统(Apache Madlib和Bismarck)快1.6 x-12.8倍。
translated by 谷歌翻译
几乎所有的多代理强化学习算法没有交流,都遵循分散执行的集中培训原则。在集中培训期间,代理可以以相同的信号为指导,例如全球国家。但是,在分散执行期间,代理缺乏共享信号。受到观点不变性和对比学习的启发,我们在本文中提出了共识学习,以学习合作的多代理增强学习。尽管基于局部观察结果,但不同的代理可以在离散空间中推断出相同的共识。在分散执行期间,我们将推断的共识作为对代理网络的明确输入提供了,从而发展了他们的合作精神。我们提出的方法可以扩展到具有小模型更改的各种多代理增强学习算法。此外,我们执行一些完全合作的任务,并获得令人信服的结果。
translated by 谷歌翻译
Recently, model-based agents have achieved better performance than model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is tough to learn the model of the environment. The significant compounding error may hinder the learning process when model-based methods are applied to multi-agent tasks. This paper proposes an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states in the latent space, making agents have the foresight. Our approach can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in different partially observable Markov decision process domains.
translated by 谷歌翻译
NL2VIS - 将自然语言(NL)查询转化为相应的可视化(VI) - 在商业可视化供应商和学术研究人员中吸引了越来越多的关注。在过去的几年里,基于高级的深度学习的模型已经实现了许多自然语言处理(NLP)任务的人类能力,这清楚地告诉我们,基于深度学习的技术是推动NL2VIS领域的好选择。但是,大禁区是缺乏大量(NL,VIS)对的基准。我们呈现NVBench,第一个大型NL2VIS基准测试,其中包含来自105个域的750个表的25,750(NL,VI)对,由(NL,SQL)基准合成,以支持跨域NL2VIS任务。NVBench的质量已被23名专家和300多名人群工人广泛验证。使用NVBench的基于深度学习的模型培训表明NVBench可以推动NL2VIS的领域。
translated by 谷歌翻译
Recently, some challenging tasks in multi-agent systems have been solved by some hierarchical reinforcement learning methods. Inspired by the intra-level and inter-level coordination in the human nervous system, we propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for fully cooperative multi-agent problems. To address the instability arising from the concurrent optimization of policies between various levels and agents, we introduce the dual coordination mechanism of inter-level and inter-agent strategies by designing reward functions in a two-level hierarchy. HAVEN does not require domain knowledge and pre-training, and can be applied to any value decomposition variant. Our method achieves desirable results on different decentralized partially observable Markov decision process domains and outperforms other popular multi-agent hierarchical reinforcement learning algorithms.
translated by 谷歌翻译
在集成感测和通信(ISAC)系统中表征传感和通信性能权衡,在基于学习的人类运动识别的应用中具有挑战性。这是因为大型实验数据集和深神经网络的黑盒性质。本文介绍了SDP3,这是一种模拟驱动的性能预测指标和优化器,由SDP3数据模拟器,SDP3性能预测器和SDP3性能优化器组成。具体而言,SDP3数据模拟器在虚拟环境中生成生动的无线传感数据集,SDP3性能预测器预测基于函数回归方法的传感性能,而SDP3性能优化器会在分析上研究传感和通信性能。结果表明,模拟传感数据集在运动识别精度中非常匹配实验数据集。通过利用SDP3,发现可实现的识别准确性和通信吞吐量由通信饱和区组成,感应饱和区和通讯感应的对抗区域,ISAC系统的所需平衡性能位于第三个一。
translated by 谷歌翻译
作为分散的部分观察到的马尔可夫决策过程(DEC-POMDP)问题的解决方案之一,最近的价值分解方法已经实现了显着的结果。然而,大多数值分解方法需要在训练期间的环境完全可观察状态,但这在一些场景中是不可行的,在某些情况下可以获得不完整和嘈杂的观察。因此,我们提出了一种新颖的值分解框架,命名为值分解(侧)的状态推断,这消除了通过同时寻求最佳控制和状态推断的两个问题来了解全局状态的需要。侧面可以扩展到任何值分解方法,以解决部分可观察的问题。通过比较星际II微型管理任务中的不同算法的性能,但我们验证了没有可访问状态,方面可以推断基于过去的本地观测的增强学习过程,甚至在一些基础上实现卓越的结果复杂的情景。
translated by 谷歌翻译
In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person reidentification. Code is available at: https://github. com/zhunzhong07/Random-Erasing.
translated by 谷歌翻译
Robust Model-Agnostic Meta-Learning (MAML) is usually adopted to train a meta-model which may fast adapt to novel classes with only a few exemplars and meanwhile remain robust to adversarial attacks. The conventional solution for robust MAML is to introduce robustness-promoting regularization during meta-training stage. With such a regularization, previous robust MAML methods simply follow the typical MAML practice that the number of training shots should match with the number of test shots to achieve an optimal adaptation performance. However, although the robustness can be largely improved, previous methods sacrifice clean accuracy a lot. In this paper, we observe that introducing robustness-promoting regularization into MAML reduces the intrinsic dimension of clean sample features, which results in a lower capacity of clean representations. This may explain why the clean accuracy of previous robust MAML methods drops severely. Based on this observation, we propose a simple strategy, i.e., increasing the number of training shots, to mitigate the loss of intrinsic dimension caused by robustness-promoting regularization. Though simple, our method remarkably improves the clean accuracy of MAML without much loss of robustness, producing a robust yet accurate model. Extensive experiments demonstrate that our method outperforms prior arts in achieving a better trade-off between accuracy and robustness. Besides, we observe that our method is less sensitive to the number of fine-tuning steps during meta-training, which allows for a reduced number of fine-tuning steps to improve training efficiency.
translated by 谷歌翻译